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PREFACE 

The Army is interested in understanding the nature of 
molecular crystals of explosives and propellants. The lone- 
term objectives of this research are: 

1. capability to predict the intrinsic sensitivity to the 
initiation of chemical reactions, 

2. capability to predict the essential physical properties 
needed by new organic compounds to be useful as explosives 
or propellants. 

There is a general feeling that the advances in knowledge of microscopic 
properties of matter,' discovered in physics and chemistry over the last 
30 years, could be profitably applied to this problem, This research 
would furnish information that cannot be obtained by the more usual 
continuum hydrodynamic approach, It is clear that several steps are 
involved between the introduction of energy into a solid and the 
eventual chemical reactions which result. One area in which micro- 
scopic modeling should yield useful results is the study of energy 
transfer through the crystal and the accumulation of that energy in a 
particular molecule. It is obvious that such steps must precede the 
dissociation of the molecule and the formation of a new species. 

The approach of our work is to bring together many well established 
ideas from several branches of physics and chemistry, making the minimal 
adjustments necessary to use them on molecular crystals of explosives 
and propellants. Then, we use these ideas to describe coherently the 
process whereby ultrasonic energy in a solid is absorbed into a 
particular molecule. Specifically we look at the phenomenon of 
resonance absorption - that is, the process of energy transfer between 
the lattice vibrations of the solid and the lowest internal vibrational 
mode of the molecules which make up the solid. We feel that the 
understanding of chemical reactions caused by shock or thermal 
initiation, as well as models for microscopic 'hot spots' caused by 
defects, will be improved by the study of resonance absorption. 
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I.  INTRODUCTION 

Originally, we became interested in studying the way that lattice 
vibrational (phonon) energy is absorbed into the molecular-vibrational 
mode of a defect molecule or a molecule located next to a defect. In 
these organic crystals the forces between the atoms in a molecule are 
much stronger than the van der Waals - type forces between molecules 
in the crystal. The energy necessary to excite the 0->l transition in 
the lowest-frequency mode of a molecular vibration is usually much 
higher than the energy of the highest-frequency phonon in a perfect 
crystal. Thus, a multiphonon process is usually required to excite 
a molecular vibration. During the course of our literature search for 
our previous paper*, we found some papers by Liebermann2"^ which 
coupled the lattice vibrations to the molecular vibrations in perfect 
crystals in essentially a standard way and suggested that the ultra- 
sonic absorption observed in benzene could be explained by this 
coupling. Other investigators5-9 have subsequently observed ultrasonic 
absorption in other crystals and used Liebermann's model to analyze 
their results. As the agreement between theory and experiment left 
some doubt as to whether or not Liebermann's model adequately explained 
the phenomenon called 'resonance absorption', we began to inspect his 
model very carefully. We have discovered that Liebermann made an 
unfortunate error in carrying out the details of his model, which in- 
validates his final theoretical expression for the transition rate for 
lattice energy to be absorbed into the molecule. As this expression 
is still being used by the other investigators, we have decided to 
formulate a model, similar to the one of Liebermann, and calculate an 
expression for the transition rate. Our new result can be assessed by 
the previous investigators on their experimental work, and the direction 
of future research on this phenomenon can be suggested from such studies. 

In our model we consider a simple cubic lattice composed of 
molecules separated by a constant lattice spacing. We make the approxi- 
mation that the center-of-mass motion of each molecule is nearly inde- 
pendent of the motion of the atoms with respect to the center of mass. 

1. D.F. Strenzwilk and P.D. Yedinak, Phys. Rev. 7, 874 (1973). 

2. L. Liebermann, Phys. Rev. 113, 1052 (1959). 

3. L. Liebermann, J. Acoust. Soc, Am. 31_, 1073 (1959), 

4. L. Liebermann,"Physical Acoustics", Vol. IV, Part A (Acad. Press,NY, 
1966) ed. by W.P. Mason, p. 183. 

5. R.A. Rasmussen, J. Chem. Phys. 36, 1821 (1962), 

6. S.S. Yun, and R.T, Beyer, J. Chem. Phys. 40_, 2538 (1964). 

7. J.D. Wilson, and S.S. Yun, J, Acoust. Soc. Am. 50_, 164 (1971). 

8. R.A. Rasmussen, J. Chem. Phys. 46_, 211 (1967), 

9. A.E. Victor, and R.T. Beyer, J. Acoust. Soc, Am, 54, 1639 (1973). 
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Then the term which couples the two motions contains the only inhar- 
monic factors in our model. The center-of-mass motion is treated in 
the same manner as a monatomic simple cubic lattice in which the 
nearest neighbors interact through a central force derivable from a 
Lennard-Jones "6-12" potential and a non-central force which we have 
arbitrarily made consistent with the Debye frequency. The molecular 
vibrations are assumed to be the same as in the gas phase. Using a 
modified Debye distributioiusfor the lattice frequencies and the Planck 
distribution for the occupation numbers of the various modes, we have 
calculated the transition rate for a molecule to absorb energy from the 
lattice. 

II. THEORY 

A.  Coupling Term. 

Consider the Lth molecule in a simple cubic crystal with its six 
nearest neighbors at equilibrium lattice separation, d, and assume a 
Lennard-Jones "6-12" potential between molecules. If the center of 
ma!S ofA

Lth m°lecule, whose equilibrium position is denoted by £ = 

d(£i + mj + nk), is moved a small distance (X,Y,Z), while the nearest 
neighbor molecules are held fixed, (as the other investigators2-8 have 
done for simplicity), we can write the potential energy for the Lth 
molecule in terms of the molecule located at (0,0,0) without loss of 
generality as follows, 

12 
U(X.Y.Z) = 4ny j- 2  

Z—i\ cx-ßdr + cY-mdr + cz-ndr I 
2mn CD 

6 a 

f(X-£d)2 + (Y-md)2 + (Z-nd)2")3 

where n and a  are constants depending of the kind of molecules involved, 
2   2   2 

and £  + m + n = 1, and £,m,n = 0,1,-1. 

If we expand this potential in a Taylor series to the fourth 
order about the origin (0,0,0) in X,Y,Z, we obtain: 

U(X,Y,Z) = U(0,0,0) + Xj(X2 + Y2 + Z2) + A,, (X4 + Y4 + Z4) 

,222222 (2) 
+ X3(XT + xV + YV)  +   .... 

16 



where 

. = 1 31 
1" 2 7~2 3x. 

l 

=  Tl 

(0,0,5)) 

528a12    120a6 

,14    "   ,8 
(3a) 

(xx, x2, x3) =  (X,Y,Z),    i,j = 1,2,3,   i j* j 

_ i ru 
2 24 3x.4 

l 

= n 

(0,0,0) 

11256a 12 

L  d 16 
1104a 
,10 

(3b) 

and 

= I   3 U 
3 4 . 2„ 2 

3x. 3x. (0,0,0) 

■9744a 
,16 

12 1632a 
,10 

(3c) 

It should be noted that the third derivative vanishes since the potential 
is an even function. To estimate the coupling between the lattice and 
molecular vibration, we assume that 

X = !mn 
Emn (4a) 

v, 
Y = y„  + 'fimn 

fimn (4b) 

and 

Kmn 
;mn 

v/T 
(4c) 

where 

^mn'^mn'^mn 
redefined displacement coordinates about the 
Lth equilibrium position RL = d(ßi + raj  + nk) 
for the center-of-mass of the molecule. 

vc  - normal coordinate for the molecular vibrational 
mode of Lth molecule. 

This is an approximation since the exact treatment would break up the 
motion of each atom in a molecule into motion of the center of mass of 
the molecule and motion with respect to the center of mass. It would 

17 



also have to take into account the forces between atoms in different 
molecules and not just the average intermolecular force between centers. 
An example of a more rigorous treatment of this coupling can be found 
in Rasmussen's^ earlier paper on solid cyclohexane, but in a later 
paper8 on carbon tetrachloride he used the simpler form of Liebermann. 
We also assume that the amplitude of the center of mass is much greater 
than the molecular-vibrational coordinate, i.e., 

nimn 
max, 

yfimn 
max, 

fimn » 

max 

Tfimn (5) 

max 

If we substitute Eq. C4) in Eq. (2), neglecting not only terms which do 
not mix the coordinates x,y,z, and v since they contribute to the un- 
coupled energy, but also terms involving x2v2,..., and xv3,... because 
of Eq. (5), we have the coupling between the lattice and molecular 
vibrations, viz., 

O A 1 1 1 
Hint ~   ^ VßmnC^mn+y£mn+zßmn)  + 1= X2VEmnCxCmn+yfimn+z£mn) 

2_ 2 2 2 2 
+ ^g- A3Vßmnt:XSmnyßmn+yßmnXßmn+XfimnZßmn ^mn^mn 

(6) 

2      2. 
+ y«mnZßnn Zßmny£mnJ ' 

where the interaction Hamiltonian or coupling term is H.  . 

B.  Total Energy of Crystal 

The main contribution to the energy of this system is composed 
of the lattice dynamical energy of the molecules as a whole, and the 
energy of the molecular vibrations. For the lattice energy in the 
harmonic approximation, we have chosen the model of Montroll-Potts-Rosen- 
stock-Newell (MPRN)10»*1 where the lattice coordinates (x,y,z) appear 
quadratically in the potential energy. The Hamiltonian for the lattice, 
Hlat' is 

10 

11 

E.W. Montroll, and R.B. Potts, Phys. Rev. 100, 525 (1955). 

H.B. Rosenstock and G.F. Newell, J. Chem. Phys. 21, 1607 (1953). 
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(7) 

Hlat = * M £mn $Mi+y2iMfhm? + * Yc £mn[ CW^l.«/ 

* &lwTyt ,**1,T?    
+ Cz£mn"z£ra n+P ] 

2 
* ** Ync £mn [ ^mn"^ .m+l.n^ 

2 2 2 
+ (y£mn-y£m,n+l3    + (z£mn'z£+1,111^    + ^iraf^n+P 

+ ^nm-y£+l,mn)2 +  CWZ£ ,m+l,/ ]     ' 

where M is the mass of a molecule, Yc = 2X: is the central force 

constant and v  is the noncentral force constant. 
nc 

For a perfect lattice composed of identical molecules of mass M, 
the equations of motion for a system composed of N x N x N = N3 

particles with nearest-neighbor central and noncentral interactions 
only are 

M'x" mn = Yc ^Lrnn^WVunJ + Ync(x£ .m+l.n^W^ .m-l.ii5 

+ V^m.n+r'WW-l'    ' (8a) 

My mn = V^.m+l^mn^.m-l.n)  + V^m.n+r^mn^m.n-P 

+ Ync(y£  +l,mn-2y£mn+yfi-l,mn^    > (8l° 

and 
• * 

M z mn = yc(-hm,K+l~2hmL*h*,n-J  + YncCz£+l,mn"2z£mn+Z£-l.mn3 

^nc^.m+l.n^W^m-l.J    > (8c) 

£,m,n = -jN+l,   ...   , y N ,        H&ven  , 

where we assume periodic boundary conditions : 

^mn = ^Si+N.mn = *£,m+N,n = ^m.n+N ' etC* 

19 



The normal modes for Eq. (8a) can be expressed in terms of the ampli- 
tude A as 

x 

Xgmn = Ax u(£mn) exp(-icot) , (10a) 

where 

u(£mn) = exp i(<j> £ + ^ m + ^ n) (10b) 

and for j = 1,2,3 

*. = (2ira./N); a^a^ = 1,2,...,N (10c) 

or - %N+1,...,%N. 

Similar solutions satisfy Eqs. (8b) and (8c). 

The general sol 
terms of plane waves 

12 
The general solution  is given by the following expansion in 

N 

(£mn) ,   (11) 

VW 
j=l,2,3 

where Q.(a ,a_,a ,) =  Q ( . I is the complex,mass-weighted, normal / \ 

coordinate for the jth branch of the mode with wavevector fc, e I .1 

is the x-component of the vector e | .j with the definition in the 

MPRN model V / 

e (jj = (1,0,0); e m = (0,1,0); i fi\   = (0,0,1) ,     (12) 

and wavevector k is 

^ = M Cai i + a2 J + a3 ^ • ^13^ 

12A.A. Maradudin, E.W. Montroll, and G.H. Weiss, "Solid State Physics", 
supp. 3, (Acad. Press, NY, 1963). 
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The y and t displacements have similar expansions. Corresponding to 

each model, .y. is a circular frequency which satisfies 

M üK( K ) = 2 £ Y (1 - cos <j>.) , 
J        i=l  x        x 

(14) 

where y. = y   and Y- s Y 'j  'c    'x   nc 
i« 

The maximum lattice frequency u is 

-    (Y + 2 Y ) 
„2 « 4 -^ S£-  . (15) 
0       M 

C.  Quantum Mechanics 

The energy of the lattice in Eq. (7) can be quantized by 

expressing Q (. ) by the following transformation which can be found © 12 in standard texts  : 

and 

(16a) 

Q I • ) - P I • ) - i I —^— i  (A _tt " V .   U6b) 

where a. £j and a^ are the creation and annihilation operators, 
respectively, for phonons whose wavevector is fc" and which belong to 
the jth branch, and fc is Planck's constant divided by 2TT. These 
operators obey the usual commutation relations of lattice dynamics 
and have familiar matrix elements for Bose operators in the numbers 
representation. Thus, Bq. (7) becomes a sum of quantum-mechanical 
operators in the numbers representation when Eq, (16) is substi- 
tuted into either Eq. (11) or the similar expressions for the 
y and z displacements, i.e., 

21 



Hlat= f hwj^ ^Vkj +1/2) * a7) 

j 

The molecular-vibrational energy for the lowest vibrational mode 
of the Lth molecule in the crystal can be expressed in terms of its 
reduced mass vu , the vibrational frequency ti,  and the normal coordinate 

for this mode v(L), so that the total vibrational energy can be expressed 
as 

Hmol =| L(PL v
200 + fi2 v2(L) ) , (18) 

where H . is the molecular-vibrational Hamiltonian. This Hamiltonian 
mol 

can be quantized by expressing the normal coordinate v(L) by the 
following transformation§ 

(2V7 vOO =(^T77\       0>* +bL) , (19a) 

and 

*(¥■)' yL v(L) = p(L) = i( -|— I  (b+ - bL) , (19b) 

where b and bT are the creation and annihilation operators, respectively, 

These operators obey the usual commutation relations and have the 
familiar matrix elements for Bose operators in the numbers representa- 
tion. Thus, Eq, (18) also becomes a sum of harmonic oscillator 
operators, one for each molecule, viz., 

Hmol - ? ^  CbL bL + 1/2) ' C20) 
Li 

The total uncoupled energy of the crystal in our model is given by 
the addition of the lattice energy of Eq. (17) and the molecular- 
vibrational energy of Eq. (20) to yield the Hamiltonian, 

«0 = Hlat + Hmol • C21) 

which operates on the eigenket    |i|£> that is the product of harmonic 
oscillator functions in the numbers representation, i.e., 

22 



Hok>    -    E0|t|;> , (22) 

where 

|n(l),n(2),...,n(N3); n^1)  , n^1), * (3% • •>*( 3    / >»   (23) 

where n(l), n(2), etc, are the molecular-vibrational quantum numbers cor^ 

-(') 
responding to the Lth molecule, and the n I . J are the phonon occupation 

numbers corresponding to the lattice vibrational mode designated by the 
wave vector £. and acoustical branch j. There are no lattice optical 
branches in the MPRN model. 

 "   3 
The eigenvalue EQ is the sum of 4N harmonic oscillators, i.e., 

En =  E (nm + V2) h ü).(ic) + X) (n(L) + 1/2D h « .    (24) U   k,j   W        3     L 

If we quantize Eq, (6) by the same procedures used for 
Eq. (17) and Eq. (20), H.  becomes 

- X3 v* 3 

L      j.j'CJ«') 

(. I and v where Q I • I and v(L) are the operators defined in Eq. (16) and Eq. (19), 

respectively. Hereafter, the first term in Eq. (25),which can transfer 
energy only when the phonon frequency equals the molecular vibrational 
frequency, will be dropped since fi>w in our model. 

The total Hamiltonian operator H   is the sum of Eq. (21) and 

Eq. (25), i.e. 

H   = H + H. „, (26) 
tot   o   int 
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where H. . contains the only anharmonic terms in this model. It is 
int 

this interaction Hamiltonian H.  which allows the energy to flow from 

the lattice into a molecule. From time-dependent perturbation theory 
the probability P.- of going from the initial state |.i> to the final 

state |.f>, when the lattice and tth molecule at time t = 0 are in a 
state that exactly corresponds to one of the eigenstates of the 
unperturbed system I i>, is 

(9) 
Pif= (SI t|<f|H.nt|i>:|2 «l-^h-^ I,       (27) 

where the Dirac 6 function is used and the superscripts f and i refer 
to the final and initial states, respectively. 

There are many final states |f> in which the system could be after 
making a transition from the given initial state |i>. The density of 
states per frequency g(a>.(k)) has been worked out for this model by 

Montroll '  . He showed that the Debye frequency distribution was 
given as 

g(o).(k)) = 3N3 (ojtfj/u* ,   0 < W.(k) < u)D 

= 0 u (k) > u)D 
(28a) 

where the circular Debye frequency o)n, (which is 2ir times the Debye 

frequency v , i.e., m  =2irvn), equals 

We decided to renormalize the Debye distribution so that the maximum 
frequency u =2irv of the MPRN model, which is greater than GJ-, would 

be included in our frequency spectrum, thus 

g(a).(k))= 3N3 UK(iO/co3 , 0 < a) (k) < to 
3 3 0       J      U (29) 

= 0 0). (£) > <i>- 

13 E.W. Montroll, in "Third Berkeley Symposium on Mathematical Statistics 
and Probability", ed. by J. Neyman, (Univ. Cal. Press, Berkeley and 
Los Angeles, 1956), p. 209. 
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The purpose of the renormalization was that we wanted to keep the 
high frequency phonons in our distribution which are truly present, 
but we did not want to add the additional mathematical difficulty of 
using the exact density of states which can be found in Montroll's paper, 
The transition rate R gives the total transition probability per unit 
time that the system initially in the state | i> is in any of the many 
final states I f>, i.e., 

■ ■ € 3 >3 >3 -, 
(30) 

dWjCk^) duy (ic2) duy/(E3) 

where R is dependent on a three-phonon process involving the lattice 
mode frequencies cü.(k\.), UI., (k ), <!).,,(£_) and the sum is taken over 

3    ■!■    3       *        3 ^ 
the nine allowed values of the j's in Eq. (25). 

D.  Quantum Statistics 

In Eq. (23) we wrote the eigenket    |*> in terms of phonon 

occupation numbers <n( -1 )/. As far as quantum mechanics is concerned m 
these numbers are integers and can be selected arbitrarily, but for a 
system in thermal equilibrium at temperature T we know that it is 
harder to populate the higher energy levels according to quantum 
statistics. Therefore, for the phonon occupation numbers for the 
initial state |i> we have used the Planck distribution where the 

( lh\) \nl  .   j> 's are chosen according to 

nfj
ij>=   ( expfhüj.O^/kß T)  - 1  j , (31) < 

where <.. .> denotes the average in thermal equilibrium and k„ is the 

Boltzmann constant. 

III.  CALCULATION 

A.  Transition Rate 

To calculate the transition rate R of Eq. (30) we must calculate 
the matrix elements |< f|H. Ji >|2 of H. . of Eq. (25) that must be 1  ' int        mt 
inserted into P.f of Eq. (27). Let us first consider the summation 

over the allowed values of the j's in Eq. (30), For a given k^k^.k^ 
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there are nine non-zero matrix elements describing the transition from 

the initial state |i> = |n(L);n( .1]  , n( .?) , n( ,/
3,) > to final 

states |f> = |n(L) + 1; nl.1] - 1, n^,2] - 1» n\j/3/)- *>-    We have 

adopted the convention of writing the occupation numbers of only those 
states that will change during the transition. Thus, |i> is really of 
the form |t|C> in Eq. (23), where the most probable occupation numbers 
are given by Eq. (31). The matrix elements for the following cases 
are: 

Case 1. ' j- J' - j"; l£>- |n(L)tl; n( l) -1, n(.2) -1, n( .3] -1> 

l< £|HlntH>|2 

42   \ -J5 (N3M)3/2 /       V V "j <l{> "j (^ "'V S   / 

CO.)«)»(J1) n(J2)   *(})    . (32) 

There are three terms of the above form for j=1,2,3. 

Case 2.      j M'   = j" J   |f > =  |n(L)+l; n^1] -1, n^.,2) -l.n^ j;
3J -1> 

4    /  2 X, 

4 
(lh       \       (   \ 
\ v3~ (N3M)3/2 /        \ v coj (kx) y (k2) uy &J  ß / 

(n(L)+l) n(J1)n(J?)   n(J?)      . (33) 

There are six terms of the above form. When we substitute these nine 
terms into P.f appearing in R, Eq. (30), along with the proper 

g(ü).(ic)) of Eq. (29), we find that there are 3 similar integrals for 

Case 1 and 6 similar integrals for Case 2. Therefore, the form of R 
in Eq. (30) becomes 
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(34) 

R. c Lfff»W ffio »M ,w gm lM 6 (a-x -y -z) dx dy dz, 

where the integral has been made dimensionless 
definitions 

by using the following 

■  „  h2  1    (1/2 X2 * 1/4 x2 ) 
(35a) 

*  «M3        (2,)3        (v5,]  ' 

a = n/w0 , (35b) 

a * *a>0/kBT - 0/T , (35c) 

lüQ^) = x tü0, ü)(k2) = y ü)0, ü)(k3) = z o>0, (35d) 

n(kx) = n(ax) = (exp(ax) - l)"1, n(k2) = n(ay) , n(£3) = n(az), (35e) 

and 

9(x) = x2, g(y) = y2, g(z) = z2 . (35f) 

The domain of integration of Eq. (34) must be 
condition that 

determined subject to the 

0 < x,y,z < 1, (36) 

since_the lattice frequencies must lie between 
g(io. (k)) in Eq. (29) will be zero. 

0 and u) 
0 
or else 

If we integrate over the variable z, the 
us to the condition 

delta function restricts 

z = a-x -y . (37) 

Eq. (36) gives the following condition 

0 < a-x -y < 1, (38) 

from which we find that 

y > -x + (a - 1), (lower limit) (39) 

and 
y < -x + a.    (upper limit) (40) 
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Therefore, in the xy plane we must integrate over all values of (x,y) 
that fall between the upper and lower limits and are common to the 
unit square in the first quadrant. In our model the ratio of the 
molecular vibrational frequency to the maximum lattice frequency lies 
between 2 and 3 for benzene, p-dichlorobenzene, carbon tetrachloride, and 
cyclohexane, i.e., 2 < a < 3, whereas for naphthalene the ratio lies 
between 1 and 2, i.e.,l<a<2. 

The domains of integration for these two cases can be seen in 
Figure 1. However, the formula for R developed by Liebermann2"4 

integrates over the whole unit square without restricting the domain 
of integration. According to our derivation such an integration would 
not conserve energy. In the model of Liebermann 

a.  = — = 3.90, 
o 

since the lowest molecular vibrational frequency of benzene is 

ft = 2ir(1.21 X 1013s""1) and the maximum lattice frequency was arbitrarily 
12 -1 

chosen to be the Debye frequency, ID =u~ =  2ITC3.1 X 10 s ). In that 

case the lower limit for the integration domain is the line y = 2,9-x, 
which passes entirely above the unit square. The integration domain 
is therefore empty and consequently R = 0. Liebermann's formula 
yields a non-zero value of R for a  = 3.90 and must be in error. 
There is no way that three phonons, whose maximum possible frequency 
is ü)0, can give the energy necessary to excite a molecular vibrational 
mode of frequency tt =  3.90 w0. 

The explicit form for R of Eq. (34) for the case 2 < a. < 3 is 

R = C -ij  I(a,a), WD 

where        j_     1 (42) 

'a) "I      ,    I Ha'a)  =|     / raax _ n r„ay  „ ,jx(a-x-y) 
x=a-2  y=-x+(a-l) 

a xy(a-x-y) dy dx 

(eax - 1) (eay - 1) (e"^-*-" - 1) 

We decided that an analytical expression for the function of Eq, 
(42) would be of more general use than a numerical solution on the 
computer for a few specific values of a and a. In order to arrive at 
such an expression, we used the Taylor series expansion. 

1 A C*. ft 

ax  _ .  ax      (ax)2      (ax)  + B lax) ß (ax)  1 - — + Bj_ -jf B2 ±jf-        B3 6,     b4 8, ax . e -1 

, |ax|< 2TT , (43) 
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(0,Ä-1) 

(1,0)      (<2-l,0) 
(a) 

■yz~x+(Z 

Jä-1,1) 

na-i) 

WO) 

i^a^2 

(a-1,0).     (i,o)      (a,0) 
x-* (b) 

Figure 1. The domain of integration for the transition rate R of Eq. (34) for 
Case (a), 2 < a < 3, and Case (b>) , 1 < a < 2. 
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where the B *s are the Bernoulli numbers, (B. = 1/6, B0 = 1/30, n 11 
B = 1/42, B. = 1/30, etc). Whbn we substituted Eq. (43) and the 

similar expressions for ay and ct(a-x-y) into Eq. (42), we obtained 
a power series in a of the form 

00 

I (a, a) = (3-<x)2 2-f cJa) °n > (44) 

n=0  n 

where we evaluated c for n = 0 to n = 9. The first few c 's were 
n n 

calculated by hand, but as this task became exceedingly tedious we 
relied much more on the values generated by a symbol manipulation 
program developed by George C. Francis14 of BRL. In the Appendix A 
of this BRL Report, we show the integral expressions for the c 's 

which will be given here in terms of a. only in Table 1. 

It is at this part in our paper that we want to point out our 
disagreement with another approximation which Liebermann made. He 
truncated the series expansion of Eq. (43) after the first term. But 
in our calculation for benzene, (as we will show later), a  = .965 in 
Eq. (35) at a temperature of 273K, and the numerical value of I(a,a) 
of Eq. (44) changes appreciately by retaining higher powers of a. 

An alternate expression for I(a,a) in Eq. (42) was pointed out 
to us by Walter Egerland15 of BRL. By making three successive 
substitutions, the variable lower limits of integration are replaced 
by zero. This form of I(a,a) is better suited to numerical integration 
on a computer, and also shows how the factor (3-a)2 in Eq. (44) 
naturally occurs. First, substitute y+t-x+a-1 in the y integration 
and then substitute t-»-(x-a+2)v. The resulting integration goes from 
v=0 to 1. Finally, substitute x->(a-2)+(3-a) u in the x integration. 
The resulting integration goes from u»0 to 1. Therefore, I(a,a) 
becomes 

Ifa a) = a3(3-a)2 f       "(P+Cl-P)")  I(a,a)  a (3 a)  I   ^alp+a-pju]^) 
(45) 

/ 
[ (l-p)uv-(l-p)u+l]      [ l-(l-p)uv]dv du 

'v=0 (yxKl-p^v-a-p)^!]^) ^all-d-pDuv]^) ' 

George C. Francis, "SYMAP2 - An Operational Computer Based Algebraic 
Symbol Manipulator", BRL Memorandum Report No, 2199, (AD 746 957), 
June 1972. 

Walter Egerland, private communication. 
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TABLE 1. VALUES OF THE   Cn's  ARE  LISTED AS A 
FUNCTION  OF a= ß/c^. 

Ci 

CA 

1/2 

-a/4 

(5a2+2a-3)/96 

-(a3+2a2-3a)/192 

c8 

{13a4+162a3-165a2-228a+162)/86,400 

(a5-6a4-30a3+n4a2-81a)/86,400 

(67a6-2910a5+l3,941a4-21J20a3-9,324a2 + 40,140a-17,838)/152,409,600 

(-23a7+132a6+747a5-6,198a4+16,569a3-20,070a2 +8,919a)/152,409,600 

(-364Ä8+8706a7-60,318a6+184,218a5-234,270a4-58/608a3+533,637a2-562,266a+ 176,931) 

/2.286144 x 1010 

(11a9-74a8-448a7+6058a6-26,610a5+62,262a4-84,068a3+62,474a2-19,659a) 

/5.08032 x 109 
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where 

p - a - 2,  u = (x-p)/(l-p), and v = (y+x-p-l)/(x-p).   (46) 

An expansion of I(a,a) in power series of a-3 is shown in Appendix B. 
For values of a < 1 we obtained numerical agreement with Eq. (44) by- 
using the first four non vanishing terms of that expansion. However, 
we prefer Eq. (44) where the temperature dependence is in the 
form of a power series in T"1 rather than complicated exponential 
factors for the latter case. 

B. Application to Real Crystals 

Up to this part of our paper we have described how to calculate 
the transition rate for a hypothetical molecular crystal with simple 
cubic structure and central and noncentral forces. Now we will 
discuss the approximations we used to treat actual molecular crystals. 
Liebermann2"4 assumed that the crystal structure of benzene, which is 
simple orthorhombic, could be approximated by a simple cubic structure 
with the length of the cube, d, assumed to be the nearest neighbor 
distance. We have made the same assumption for benzene, as well as 
for cyclohexane5 and carbon tetrachloride8, which are face-centered 
cubic, and p-dichlorobenzene6 and naphthalene6»7, which are monoclinic 
C. We have used the data contained in the above papers and listed in 
Table 2 to calculate the central force constant Y , i.e., 

Y = 2X. (47) 
c   1 

where Xx is defined in Eq. (3a). The results are given in Table 3. 

For the noncentral force constant we were faced with the follow- 
ing dilemma. We had no information on what noncentral forces to use, 
and yet if we used only central forces and a simple cubic lattice, we 
would have three independent linear chains in the x,y, and z directions. 
Our model would reduce to a one dimensional problem with the density 
of states g(u.(k)) the same as for the linear chain. Therefore, we 

decided to determine the noncentral force constant Ync arbitrarily 

by making it consistent with the known Debye frequency Vp as reported 

in the aforementioned papers. Using Eq. (28) with the relation 
u) = 2irvD and Eq. (15) with the relation uQ = 2irvo, we determined Ync 

and the maximum lattice frequency to be used in Eq. (29). The results 
are listed in Table 3. To determine X^ %2,  and X3 of Eq. (3), we 

used the information in Table 2 and listed the results in Table 4. 
Finally, using values of k. = 1.3806 X lO"*6 erg-K-1 and h = 1.0542 
X 10~27 erg-s, we calculated values of the constant C in Eq. (35a) for 
the various substances and also evaluated the constant a in Eq. (35b) 
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hü) 
and the ratio -r— = 0 in Table 5. 

B 

2-4 
We now have enough information to check our results for benzene  , 

p-dichlorobenzene^, carbon tetrachloride8, and cyclohexane5 against 
those of previous investigators, who measured the absorption at the 
temperatures indicated in Table 6, and determined Rexptfrom a gas phase 
expression used by Liebermann. The expression for the absorption of 
ultrasound given by Liebermann2-4 is 

1   (C - C )     C       ü)2 R  . 
B--  -* V-          2 *T        > (48) 

2V    C
P    CCp-C)  Co»2 + R

2
expt) 

where 3 is the absorption, V the velocity of sound, C , C are the 

specific heats at constant pressure and constant volume,^ is the 
specific heat associated with that part of the molecular energy which 
relaxes, w is the circular frequency of the sound wave, and R  t is 

2-4 p 

the transition rate. Liebermann   implies that his expression Eq. (48), 
has some connection with a similar expression for the absorption of 
ultrasound in a molecular gas found in a paper by Richards1**. After 
changing the notation in Richards' paper, his expression becomes, 

1     (C -C ) C u)2 f_n 

2V  CpCvf10+ (Cp"C/) CCv-C,) U 

where fin is the transition rate for the molecule to go from 1 -*■ 0 and 

is related to our transition rate R in Eq. (41) by 

f10 =  exp (h fl/kB T) R  , (50) 

while 

f01 = R , (51) 

where f... is the transition rate for the molecule to go from 0 ■*■  1, 

The expression of Richards, Eq. (49), was first developed for a two- 

state system where the relaxation time x is related to the transition 
rates in the usual way, viz., 

W.T. Richards, "Supersonic Phenomena", Revs, Modern Phys, H_, 36 
(1939). 
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7=fio*foi • <52' 

However, Richards  then noted that fm must be neglected when terms 

involving exp(-2hv /kDT) are dropped, i.e., 
Ul   D 

T=fio  • C53) 

Richards* expression also agrees with an expression for ß found in 
Eq. (16-15) and Eq. (11-19) in the book by Herzfeld and Litovitz17, 
provided that x is set equal to l/f10- Although other approximations 
for the relaxation time can be used in Eq. (49) we have assumed upon 
reading Liebermann's papers that R    in Eq. (48) is 

R   s fin , (54) 
expt   10 

because of the similarity between Eq. (48) and Eq. (49). We prefer 
Richards' Eq. (49) over Liebermann's Eq. (48) because a derivation 
is given of the former16»17 whereas the latter is stated with no deri- 
vation2-4. In Table 6 all the information necessary to calculate 
an experimental value of flf) from either Eq. (48) or Eq. (49) is given. 

With the exception of the specific heats for benzene, which were  .„ 
graphically extrapolated from a paper by Lord, Ahlberg, and Andrews , 
all the data in Table 6 are taken from the papers of the previous 
investigators. Finally, we have used our Eq. (41) to calculate f«-,- R, 

and thereby f _ and have compared it to the experimental value of f1Q 

from Liebermann's Eq. (48) and Richards' Eq. (49) in Table 7. 

Our results are in good agreement with experiment,considering the 
approximations made in our theory as well as in the experiments. Inspec- 
tion of Table 7 shows better agreement of our theoretical transition 
rate £._ with Richards' experimental f-- for benzene and p-dichloro- 

benzene than with Liebermann's experimental transition rate. For 
cyclohexane the experimental transition rate of Liebermann and Richards 
are approximately the same, while Liebermann's value of f1Q for carbon 

tetrachloride is more in agreement with our theory than Richards' 
value. More investigation is needed to determine why Liebermann and 
Richards have different expressions for the experimental transition 
rate. 

17 
K.F. Herzfeld, and T.A. Litovitz, "Absorption and Dispersion of 
Ultrasonic Waves", (Academic Press, NY, 1959), p. 77 and p. 63 
respectively. 

R.C. Lord, Jr., J.E. Ahlberg, and D.H. Andrews, "Calculation of the 
Heat Capacity Curves of Crystalline Benzene and Benzene - d ", 
J. Chem. Phys. 5, 649 (1937). 
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IV.  DISCUSSION 

We have assumed a coupling between three phonons of lattice 
energy and the 0 -*■ 1 transition in the lowest vibrational mode of a 
molecule, situated in a simple cubic lattice described by the MPRN 
model. Then, with the assumption that the density of states can be 
approximated by a Debye-like distribution, we calculated the transition 
rate R for a molecule to absorb energy from the lattice. We made 
several approximations in order to calculate the transition rate for 
benzene, p-dichlorobenzene, carbon tetrachloride, and cyclohexane. 
The most notable are that the actual crystal structures can be 
approximated by a simple cubic lattice, and that the non-central force 
constant is determined artificially by making it consistent with the 
known Debye frequency. We compared our f1f) against the experimental 

value fin of the other investigators, which was determined from an 
0   A 1 ft 

expression for absorption in gases by Liebermann   and Richards 
This expression does not account for the differences in absorption 
actually measured along the a,b,c principal crystal axes by Victor 
and Beyer . A better expression for absorption must be developed. 

When we tried to compare our theoretical transition rate with 
the theoretical one developed by Liebermann2"4, we realized that his 
final expression was incorrect because it failed to conserve energy. 
Under these circumstances we decided that a comparison of the two 
expressions was inappropriate, even though the theoretical transition 
rate developed by Liebermann gives a reasonable value for benzene of 
109s-1. 

Our paper suggests several directions for future research. With 
the expressions that we have developed, a theoretical curve of 
absorption versus ultrasonic frequency or temperature can be plotted 
and compared with the corresponding experimental curve. Many experi- 
mentalists have suggested that the exact expression for the density of 
states gO-(k)) might be important, instead of the Debye approximation 
Since the exact density of states is known for the MPRN10,12 model, 
the differences in the theoretical transition rate can be compared for 
this model using our formulas. Finally, the actual crystal structure 
should be put into the calculation as well as the dependence of the 
transition rate on molecular arrangements along the different crystal 
directions. 
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APPENDIX A 

Evaluation of the Integral I(a,a) 

The integral I(a,a) is defined in Eq. C42) as 

1     1       3 

Ifaal-f    f a xy(a-x-y)dy dx        (A1) 

x«a-2  y=-x+(a-l) v   'v 

The Taylor series expansions of ax/(ea  -1), etc., are given by 

,2n 
ax .!.«. 2>l)»Bn£&- , CA.2a, 
ax . 

e -1 n-1 

eay-l) 

ay  _ .  ay_   V^ , .,n R (ay) (A.2b) 

and 

qQ-x-y)  = ! _ aC^-x-y) . V* c.1Dn B CaC^-x-y))       (A>2c) 
«ra-x-vl .   A    2      Z-» L iJ  n  (2n)! aCa-x-y) .   A '   2      Z—» ^ J  n  (2n) 

e      _i n=l 

where the B 's are the Bernoulli numbers  , (B = 1/6, B = 1/30, 
n i       ^ 

B = 1/42, B = 1/30, etc). When these expansions are substituted 

into Eq. (A.l), we can generate an approximation to I{a,a) in powers 
of a. To obtain our final form we have made use of the following 
relations 

1 1 

f     ymCd-y)n dy - f     yn( 
•'d-l d-l 

(d-y)m dy , (A.3) 

19M.R. Spiegel, in "Mathematical Handbook of Formulas and Tables" (Schaum's 
Outline Series, McGraw-Hill, NY, 1968), p. 114. 
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where d = a. - x, and 

A 1 1 1 ^ 

/ /       xnymCd-y)pdydx =   [ f       xmynCd-y)pdydx . 

■'x = CL-2   ^y=d-l A=a-2  Jy=d-1 

Rewriting I(a,a), with the help of Eq.   (44) we have 
(A-5) 1 1 00 00 * ' 

ICa.o) = f f ^ (fnCx,y)an)dydx = (3-a)2^cnan, 

*^x=a-2     *V=d-l     n=0 n=0 

where the integrand f (x,y) obeys the following relation 

-/.. / 
(3-a)\ = /      /    fn(x,y)dydx . CA.6) 

x=a-2  y=d-l 

We list the f 's in Table I. The c *s have already been given as a 

function of a  in Table 1. 
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APPENDIX B 

Taylor Series Expansion of I(a,a) 
About the point a = 3. 

The integral I(a,a) is defined in Eq.   (45) as 
(B.l) 

ffl-pluv-Cl-PJu+l) 
(ea((l-p)uv-Cl-p)u+l)_^ 

. i 
Ce' Vl-(l-p5 uv) 

dvdu    , 

where 

p = a - 2, 

and 

0 < p < 1, i.e., 2 < a. < 3 . 

The Taylor series expansion of I (a, a) about the point a 

a 

2(e"-l? 

CB.2) 

(B.3) 

3,  is 

ICa.cO - a3(a - 3)2 l_   +    «I-?«"-!?    Ca - 3) 
a ,s3 „,_a n>4 

2Ceu-l) 

+  re2aC2a2 - 4a * n  * eV2 + 4a - 2)  ♦ l]      Ca . 3)2 
8Cea- l)5 

r>5afl-15a^30a2-10a3^e2af-3-30a-15a2-18a3^eaC3-15a-15a -3a )-l][a-3)3 

.+    »i i— ,        ~ T"        ~~2      : 

120(ea - l)6 

+    •   • (B.4) 

where we have considered a to be fixed. 
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